Your Blog

Included page "clone:aycocklott9" does not exist (create it now)

Office / Indoor Air Quality – Investigating IAQ Complai - 17 Feb 2018 05:48

Tags:

The air quality of the indoor environment such as a non-industrial office environment can significantly affect the health, comfort, and productivity of building occupants.

Indoor air quality (IAQ) in the workplace, such an office environment, is the subject of much attention recently, and for good reason. Although serious irreversible health problems related to IAQ in non-industrial office environments are rare, the perception of endangered health is increasingly common among building occupants.

To date, the causes and consequences of poor IAQ are complex and not completely understood, but there are some basic factors that in many cases address IAQ concerns.

IAQ is a problem when the air contains dust and objectionable odours, chemical contaminants, dampness, mould or bacteria.

Poor indoor air quality can lead to a number of physical symptoms and complaints. The most common of these include:

Thermal discomfort: too hot or too cold

Headaches

Fatigue

Shortness of breath (eg. insufficient oxygen related to high carbon dioxide levels)

Sinus congestion

Coughs

Sneezing

Eye, nose, and throat irritation

Skin irritation

Dizziness

Nausea

Skin irritation

These physical symptoms and complaints are often attributed to indoor air quality, however, it is important to note that indoor air quality is not always the cause. Other factors in the indoor environment such as noise, overcrowding, improper lighting, poor ergonomic conditions, and job stress can also lead to these symptoms and complaints. In many situations, a combination of factors is to blame.

An increased likelihood of complaints is usually associated with factors such as the installation of new furnishings, uncontrolled renovation activities, poor air circulation and air flow, persistent moisture and ongoing low relative humidity. Complaints may also increase when there is a stressful work environment, such as impending layoffs, a great deal of overtime, or an ongoing conflict among staff members and management.

A number of factors can affect the indoor air quality of a building or facility, including:

The physical layout of the building

The building’s heating, ventilation, and air conditioning (HVAC) system

The outdoor climate

The people who occupy the building

Contaminants emitted inside and entered from outside the building

Poor indoor air quality and indoor air contaminants affect some people more seriously, including:

People with allergies or asthma

People with respiratory disease

People whose immune system is suppressed as a result of disease or treatment

People who wear contact lenses

Indoor air contaminants can originate within a building or be drawn in from outdoors. These contaminants can lead to indoor air quality problems, even if the HVAC system is well designed, regularly maintained, and functioning to its optimum conditions.

Sources of contaminants inside the building environment may include:

Dust, dirt, or mould in the HVAC system (eg. cooling coils, ducts, registers)

Office equipment such as laser printers and copiers (eg. airborne particulates, ozone)

Personal activities such as smoking or cooking (eg. Volatile organic compounds, nicotine)

Housekeeping activities such as cleaning and dusting

Maintenance activities such as painting (eg. Volatile organic compounds)

Spills of water or other liquids

Special use areas such as print shops and laboratories

Industrial processes such as dry cleaning

Moisture affected building materials (eg. mould and bacteria)

Sources of contaminants from outside the building may include:

Vehicle exhaust

Pollen and dust (eg. long term build up if cleaning regime is inadequate)

Smoke

Unsanitary debris or dumpsters near the outdoor air intake

Depending on the complaint reported by building occupants, an indoor air quality investigation should include the following:

Interview with building occupants to identify potential causes such as identifiable odours, recent changes that may have caused the issue, water intrusion event, increased occupancy, cleaning regime, etc.

Assessment of the ventilation rate (generally when the indoor carbon dioxide levels are over 650 parts per million (ppm) above ambient outdoor levels)

Walkthrough inspection of the building and the ventilation system (filters, cooling coils, condensation trays, air ducts, etc.)

Sampling for airborne contaminants suspected to be present in concentrations associated with the reported complaints.

Documenting the complaint, the investigation, and any actions taken.

Occupant concerns regarding indoor air quality should be taken seriously and responded to as soon as possible. Initial information should be collected, checked and verified, preferably through interviews with occupants and a visual inspection:

Details about the specific complaint

Location(s) of the building where similar concerns about IAQ have been reported

Time of occurrence of the IAQ problem

When and where did it start and what has changed in the building just before the problem was first experienced

People affected and extent of the affected area(s)

Specific details on the health effects or discomfort occupants are experiencing

If the health effects stop soon after leaving the building, or over the weekend

If the symptoms have been diagnosed by a medical practitioner

If there are any identifiable practices inside or outside the building occurring at a time coinciding with the reported issues

If the air conditioning contractor or the building engineer evaluated the HVAC system or other conditions and the conclusions reached

Once the information above is gathered and analysed the walkthrough inspection by a specialist indoor air quality consultant should be undertaken to identify potential sources of contamination or unusual conditions. Generally, at this stage the IAQ consultant should be able to narrow the possibilities and developing air sampling strategy if required to confirm potential causes of the IAQ problem and decide on suitable solutions or if further investigation is required.

SESA

Generally, most IAQ issues can be resolved by addressing maintenance issues of the HVAC system (eg. air exchange rates, improved ventilation and air flow, filter change and disinfection of the internal surfaces of the air handling unit and the air ducts), HEPA vacuuming of the entire space, building repairs, addressing moisture issues, removing potential sources of contamination, implementing a new cleaning regime).

Under the Work Health & Safety Legislation, it is the duty of the person conducting a business or undertaking (PCBU) to provide a work environment that is free from risks to health and safety.

If you require assistance regarding the indoor air quality at your workplace please contact SESA on 02 8786 1808

First posted here https://www.sesa.com.au/14-indoor-air-quality/office-indoor-air-quality-investigating-iaq-complaints.html - Comments: 0

Asbestos Exposure & Risk of Developing Asbestos Related - 14 Feb 2018 09:35

Tags:

Asbestos is a naturally occurring rock forming mineral silicate in fibrous form belonging to the serpentine and amphibole groups. It occurs naturally in large deposits on every continent in the world. There are six types of naturally occurring asbestos fibres of which only three have been used commercially in Australia. These included the serpentine: Chrysotile (white asbestos); and the amphiboles: Crocidolite (blue asbestos) and Amosite (brown or grey asbestos). The other three non-commercially used amphiboles included Tremolite, Actinolite and Anthophyllite.

Asbestos has been used in the ancient world of the Egyptians, Greeks and Romans. It is believed that as early as 4000 BC, asbestos fibres were used for wicks in lamps and candles. Between 2000-3000 BC, embalmed bodies of Egyptian pharaohs were wrapped in asbestos cloth. The Greeks and Romans documented the harmful effects of asbestos fibres on those who mined the silken material from ancient stone quarries noting a “sickness of the lungs” in slaves who wove asbestos into cloth.

The commercial use of asbestos commenced in the late 1800s in Australia in four main industries including Mining and Milling; Building & Construction (for strengthening cement and plastics, for insulation, fireproofing and sound absorption); Ship Building (eg. insulation of boilers and steampipes) and the Automotive Industry (eg. vehicle brake shoes, gaskets and clutch pads).

There were over 3000 products (Asbestos Containing Materials or ACM) manufactured with asbestos fibres. The ACM fall into two broad categories: friable and non-friable (or bonded).

‘Friable’ is ACM that can be easily reduced to powder when crushed by hand, when dry. These materials can contain higher percentages of asbestos fibres and are easily or more likely to release airborne fibres into the environment with minimal disturbance. As such, they pose a greater risk to health. Friable materials must only be handled and removed by an asbestos removalist with Class A Asbestos Removal Licence. Examples of friable asbestos-containing materials include sprayed on fire retardants, insulation (eg. millboard, pipe insulation), sound proofing, the lining on some old domestic heaters, stoves and hot water systems and associated pipe lagging, the backing of sheet vinyl and linoleum floor coverings, thermal lagging, some vermiculite.

‘Non-friable’, or bonded ACM is used to refer to ACM in which the asbestos is firmly bound in the matrix of the material. These materials are unlikely to release measurable levels of airborne asbestos fibre into the environment if they are undisturbed. Therefore, they generally pose a lower risk to health. However, activities that may abrade the ACM such as drilling, grinding have the potential to release higher concentrations of airborne asbestos fibres into the environment. The non-friable ACM are mainly made up of asbestos fibres together with a bonding compound (such as cement), and typically contain up to 15 per cent asbestos. Non-friable ACM are solid, quite rigid and the asbestos fibres are tightly bound in the material. Non-friable ACM are the most common in domestic houses. They are commonly called ‘fibro’, ‘asbestos cement’ and ‘AC sheeting’. Examples of non-friable ACM include asbestos cement products (flat, profiled and corrugated sheeting used in walls, ceilings and roofs, moulded items such as downpipes) and vinyl floor tiles.

While asbestos is a hazardous material it can only pose a risk to health if the asbestos fibres become airborne in respirable size, are inhaled and lodge deep into the lungs (in the alveoli). Inhalation is the main route of entry to the body. Respirable fibres are fibres that are more likely to reach the small airways and alveolar region of the lung and are defined as having a length of more than five microns, and an aspect ratio (length/width) greater than 3:1.

Asbestos is classified according to the Globally Harmonised System of Classification and Labelling of Chemicals (GHS) as Carcinogenicity Category 1A (May cause cancer).

There are several asbestos related diseases that may result from the exposure to asbestos which depends on factors such as fibre type; size and shape of fibres; concentration of asbestos fibres in the inhaled air and period of time over which the person was exposed. The asbestos related diseases include:

Asbestosis

https://www.sesa.com.au/asbestos-testing-and-analysis.html

Pleural plaques

Malignant mesothelioma of the pleura and peritoneum

Lung cancer

Benign asbestos pleural effusion

Progressive pleural fibrosis (diffuse pleural thickening)

Transpulmonary bands (crow’s feet)

Rounded atelectasis

All asbestos related diseases have a latency period that is the period commencing from the time of the exposure to the asbestos fibres first occurred until symptoms of a disease show. This may range from 10 – 50 years for the asbestos related diseases.

Workplace exposures to asbestos fibres first occurred while mining asbestos, manufacturing asbestos containing products or using those products during the construction of buildings. Currently, the main source of exposure to asbestos fibres is during the maintenance, renovation or demolition of old buildings with asbestos containing materials.

Asbestos containing materials are subject to environmental weathering which causes them to breakdown and release asbestos fibres. Low levels of airborne asbestos fibres are encountered in the environment from the breakdown of asbestos products. Environmental weathering of asbestos cement sheets in roofing and wall cladding, disturbance of asbestos from a variety of building materials like insulation and asbestos release to air from clutches and brakes in cars and trucks results in asbestos fibres being dispersed in the environment.

According to Australian Government Department of Health website, we are all exposed to low levels of asbestos in the air we breathe every day. Ambient or background air usually contains between 10 and 200 asbestos fibres in every 1000 litres (or cubic metre) of air (equivalent to 0.01 to 0.20 fibres per litre of air). However, most people do not become ill from this exposure, because the levels of asbestos present in the environment are very low. Most people are also exposed to higher levels of asbestos at some time in their lives; for example, in their workplace, community or home. However, for most people, this kind of infrequent exposure is also unlikely to result in any ill effects.

Safe Work Australia states that “the typical environmental background in outdoor air is 0.0005 fibres/ml and 0.0002 fibres/ml in indoor air. The daily inhalation volume for an average adult is 22 m3 or 22000 litres. This means 5500 fibres are breathed/day by the average person (proportion of time spent indoors = 20 hours/day). Despite this the general population does not contract asbestos related disease in significant numbers. The background rate of mesothelioma is less than one per million per year. By comparison, the annual death rate for a 40 year old male in 2008 was 1.6 per thousand or 1600 per million. However, there is no absolutely safe level of exposure to asbestos fibres.

Most people who develop asbestos related diseases were workers who have worked on jobs where they frequently breathed in large amounts of asbestos fibres. As an example, construction workers using unsafe practices in the past may have frequently encountered asbestos fibre levels significantly higher than those levels found in the background. The current workplace exposure standard (time weighted average (TWA) over an eight-hour period) is 0.1 fibres/millilitre of air (100 fibres per litre which is between 500 and 10,000 times the background levels). In the past, workers in asbestos milling or mining often encountered fibre concentrations a million times higher than background levels. In 2011, 606 deaths were caused by mesothelioma and 125 deaths were caused by asbestosis in Australia.

Family members of exposed workers or those who lived close to active asbestos mines in the past are also at risk. A worker exposed to asbestos fibres or a home renovator can carry asbestos fibres on their clothing, boots, skin, hair and tools. Everyone should be alert to ensure they do not become exposed to these fibres.

A very small number of asbestos-related disease cases occur each year in people who have not worked with asbestos products. The low number of cases makes it difficult to determine the exact cause of the disease or the likely exposure event, but unsafe handling of asbestos materials in the home may have contributed to some of these cases.

The uncontrolled disturbance of asbestos containing materials must be avoided at any time to prevent the release of airborne asbestos and increase the risk of exposure to airborne asbestos fibres. The exposure to airborne asbestos fibres should be reduced to as low as reasonably practicable by managing asbestos containing materials in-situ and adopting safe work practices as required by the Work Health & Safety Regulations and Safe Work Australia Codes of Practice “How to Manage & Control Asbestos In the Workplace”: and “ How to Safely Remove Asbestos”.

If you require assistance in asbestos inspection, asbestos testing or asbestos assessment contact SESA on 02 8786 1808.

First posted here https://www.sesa.com.au/15-asbestos/asbestos-exposure-risk-of-developing-asbestos-related-disease.html - Comments: 0

Asbestos Exposure & Risk of Developing Asbestos Related - 12 Feb 2018 15:14

Tags:

Asbestos is a naturally occurring rock forming mineral silicate in fibrous form belonging to the serpentine and amphibole groups. It occurs naturally in large deposits on every continent in the world. There are six types of naturally occurring asbestos fibres of which only three have been used commercially in Australia. These included the serpentine: Chrysotile (white asbestos); and the amphiboles: Crocidolite (blue asbestos) and Amosite (brown or grey asbestos). The other three non-commercially used amphiboles included Tremolite, Actinolite and Anthophyllite.

Asbestos has been used in the ancient world of the Egyptians, Greeks and Romans. It is believed that as early as 4000 BC, asbestos fibres were used for wicks in lamps and candles. Between 2000-3000 BC, embalmed bodies of Egyptian pharaohs were wrapped in asbestos cloth. The Greeks and Romans documented the harmful effects of asbestos fibres on those who mined the silken material from ancient stone quarries noting a “sickness of the lungs” in slaves who wove asbestos into cloth.

The commercial use of asbestos commenced in the late 1800s in Australia in four main industries including Mining and Milling; Building & Construction (for strengthening cement and plastics, for insulation, fireproofing and sound absorption); Ship Building (eg. insulation of boilers and steampipes) and the Automotive Industry (eg. vehicle brake shoes, gaskets and clutch pads).

There were over 3000 products (Asbestos Containing Materials or ACM) manufactured with asbestos fibres. The ACM fall into two broad categories: friable and non-friable (or bonded).

‘Friable’ is ACM that can be easily reduced to powder when crushed by hand, when dry. These materials can contain higher percentages of asbestos fibres and are easily or more likely to release airborne fibres into the environment with minimal disturbance. As such, they pose a greater risk to health. Friable materials must only be handled and removed by an asbestos removalist with Class A Asbestos Removal Licence. Examples of friable asbestos-containing materials include sprayed on fire retardants, insulation (eg. millboard, pipe insulation), sound proofing, the lining on some old domestic heaters, stoves and hot water systems and associated pipe lagging, the backing of sheet vinyl and linoleum floor coverings, thermal lagging, some vermiculite.

‘Non-friable’, or bonded ACM is used to refer to ACM in which the asbestos is firmly bound in the matrix of the material. These materials are unlikely to release measurable levels of airborne asbestos fibre into the environment if they are undisturbed. Therefore, they generally pose a lower risk to health. However, activities that may abrade the ACM such as drilling, grinding have the potential to release higher concentrations of airborne asbestos fibres into the environment. The non-friable ACM are mainly made up of asbestos fibres together with a bonding compound (such as cement), and typically contain up to 15 per cent asbestos. Non-friable ACM are solid, quite rigid and the asbestos fibres are tightly bound in the material. Non-friable ACM are the most common in domestic houses. They are commonly called ‘fibro’, ‘asbestos cement’ and ‘AC sheeting’. Examples of non-friable ACM include asbestos cement products (flat, profiled and corrugated sheeting used in walls, ceilings and roofs, moulded items such as downpipes) and vinyl floor tiles.

While asbestos is a hazardous material it can only pose a risk to health if the asbestos fibres become airborne in respirable size, are inhaled and lodge deep into the lungs (in the alveoli). Inhalation is the main route of entry to the body. Respirable fibres are fibres that are more likely to reach the small airways and alveolar region of the lung and are defined as having a length of more than five microns, and an aspect ratio (length/width) greater than 3:1.

Asbestos is classified according to the Globally Harmonised System of Classification and Labelling of Chemicals (GHS) as Carcinogenicity Category 1A (May cause cancer).

There are several asbestos related diseases that may result from the exposure to asbestos which depends on factors such as fibre type; size and shape of fibres; concentration of asbestos fibres in the inhaled air and period of time over which the person was exposed. The asbestos related diseases include:

Asbestosis

Pleural plaques

Malignant mesothelioma of the pleura and peritoneum

Lung cancer

Benign asbestos pleural effusion

Progressive pleural fibrosis (diffuse pleural thickening)

Transpulmonary bands (crow’s feet)

Rounded atelectasis

All asbestos related diseases have a latency period that is the period commencing from the time of the exposure to the asbestos fibres first occurred until symptoms of a disease show. This may range from 10 – 50 years for the asbestos related diseases.

Workplace exposures to asbestos fibres first occurred while mining asbestos, manufacturing asbestos containing products or using those products during the construction of buildings. Currently, the main source of exposure to asbestos fibres is during the maintenance, renovation or demolition of old buildings with asbestos containing materials.

https://www.sesa.com.au/

Asbestos containing materials are subject to environmental weathering which causes them to breakdown and release asbestos fibres. Low levels of airborne asbestos fibres are encountered in the environment from the breakdown of asbestos products. Environmental weathering of asbestos cement sheets in roofing and wall cladding, disturbance of asbestos from a variety of building materials like insulation and asbestos release to air from clutches and brakes in cars and trucks results in asbestos fibres being dispersed in the environment.

According to Australian Government Department of Health website, we are all exposed to low levels of asbestos in the air we breathe every day. Ambient or background air usually contains between 10 and 200 asbestos fibres in every 1000 litres (or cubic metre) of air (equivalent to 0.01 to 0.20 fibres per litre of air). However, most people do not become ill from this exposure, because the levels of asbestos present in the environment are very low. Most people are also exposed to higher levels of asbestos at some time in their lives; for example, in their workplace, community or home. However, for most people, this kind of infrequent exposure is also unlikely to result in any ill effects.

Safe Work Australia states that “the typical environmental background in outdoor air is 0.0005 fibres/ml and 0.0002 fibres/ml in indoor air. The daily inhalation volume for an average adult is 22 m3 or 22000 litres. This means 5500 fibres are breathed/day by the average person (proportion of time spent indoors = 20 hours/day). Despite this the general population does not contract asbestos related disease in significant numbers. The background rate of mesothelioma is less than one per million per year. By comparison, the annual death rate for a 40 year old male in 2008 was 1.6 per thousand or 1600 per million. However, there is no absolutely safe level of exposure to asbestos fibres.

Most people who develop asbestos related diseases were workers who have worked on jobs where they frequently breathed in large amounts of asbestos fibres. As an example, construction workers using unsafe practices in the past may have frequently encountered asbestos fibre levels significantly higher than those levels found in the background. The current workplace exposure standard (time weighted average (TWA) over an eight-hour period) is 0.1 fibres/millilitre of air (100 fibres per litre which is between 500 and 10,000 times the background levels). In the past, workers in asbestos milling or mining often encountered fibre concentrations a million times higher than background levels. In 2011, 606 deaths were caused by mesothelioma and 125 deaths were caused by asbestosis in Australia.

Family members of exposed workers or those who lived close to active asbestos mines in the past are also at risk. A worker exposed to asbestos fibres or a home renovator can carry asbestos fibres on their clothing, boots, skin, hair and tools. Everyone should be alert to ensure they do not become exposed to these fibres.

A very small number of asbestos-related disease cases occur each year in people who have not worked with asbestos products. The low number of cases makes it difficult to determine the exact cause of the disease or the likely exposure event, but unsafe handling of asbestos materials in the home may have contributed to some of these cases.

The uncontrolled disturbance of asbestos containing materials must be avoided at any time to prevent the release of airborne asbestos and increase the risk of exposure to airborne asbestos fibres. The exposure to airborne asbestos fibres should be reduced to as low as reasonably practicable by managing asbestos containing materials in-situ and adopting safe work practices as required by the Work Health & Safety Regulations and Safe Work Australia Codes of Practice “How to Manage & Control Asbestos In the Workplace”: and “ How to Safely Remove Asbestos”.

If you require assistance in asbestos inspection, asbestos testing or asbestos assessment contact SESA on 02 8786 1808.

First posted here https://www.sesa.com.au/15-asbestos/asbestos-exposure-risk-of-developing-asbestos-related-disease.html - Comments: 0

Asbestos Exposure & Risk of Developing Asbestos Related - 01 Feb 2018 21:51

Tags:

Asbestos is a naturally occurring rock forming mineral silicate in fibrous form belonging to the serpentine and amphibole groups. It occurs naturally in large deposits on every continent in the world. There are six types of naturally occurring asbestos fibres of which only three have been used commercially in Australia. These included the serpentine: Chrysotile (white asbestos); and the amphiboles: Crocidolite (blue asbestos) and Amosite (brown or grey asbestos). The other three non-commercially used amphiboles included Tremolite, Actinolite and Anthophyllite.

Asbestos has been used in the ancient world of the Egyptians, Greeks and Romans. It is believed that as early as 4000 BC, asbestos fibres were used for wicks in lamps and candles. Between 2000-3000 BC, embalmed bodies of Egyptian pharaohs were wrapped in asbestos cloth. The Greeks and Romans documented the harmful effects of asbestos fibres on those who mined the silken material from ancient stone quarries noting a “sickness of the lungs” in slaves who wove asbestos into cloth.

The commercial use of asbestos commenced in the late 1800s in Australia in four main industries including Mining and Milling; Building & Construction (for strengthening cement and plastics, for insulation, fireproofing and sound absorption); Ship Building (eg. insulation of boilers and steampipes) and the Automotive Industry (eg. vehicle brake shoes, gaskets and clutch pads).

There were over 3000 products (Asbestos Containing Materials or ACM) manufactured with asbestos fibres. The ACM fall into two broad categories: friable and non-friable (or bonded).

‘Friable’ is ACM that can be easily reduced to powder when crushed by hand, when dry. These materials can contain higher percentages of asbestos fibres and are easily or more likely to release airborne fibres into the environment with minimal disturbance. As such, they pose a greater risk to health. Friable materials must only be handled and removed by an asbestos removalist with Class A Asbestos Removal Licence. Examples of friable asbestos-containing materials include sprayed on fire retardants, insulation (eg. millboard, pipe insulation), sound proofing, the lining on some old domestic heaters, stoves and hot water systems and associated pipe lagging, the backing of sheet vinyl and linoleum floor coverings, thermal lagging, some vermiculite.

‘Non-friable’, or bonded ACM is used to refer to ACM in which the asbestos is firmly bound in the matrix of the material. These materials are unlikely to release measurable levels of airborne asbestos fibre into the environment if they are undisturbed. Therefore, they generally pose a lower risk to health. However, activities that may abrade the ACM such as drilling, grinding have the potential to release higher concentrations of airborne asbestos fibres into the environment. The non-friable ACM are mainly made up of asbestos fibres together with a bonding compound (such as cement), and typically contain up to 15 per cent asbestos. Non-friable ACM are solid, quite rigid and the asbestos fibres are tightly bound in the material. Non-friable ACM are the most common in domestic houses. They are commonly called ‘fibro’, ‘asbestos cement’ and ‘AC sheeting’. Examples of non-friable ACM include asbestos cement products (flat, profiled and corrugated sheeting used in walls, ceilings and roofs, moulded items such as downpipes) and vinyl floor tiles.

While asbestos is a hazardous material it can only pose a risk to health if the asbestos fibres become airborne in respirable size, are inhaled and lodge deep into the lungs (in the alveoli). Inhalation is the main route of entry to the body. Respirable fibres are fibres that are more likely to reach the small airways and alveolar region of the lung and are defined as having a length of more than five microns, and an aspect ratio (length/width) greater than 3:1.

Asbestos is classified according to the Globally Harmonised System of Classification and Labelling of Chemicals (GHS) as Carcinogenicity Category 1A (May cause cancer).

There are several asbestos related diseases that may result from the exposure to asbestos which depends on factors such as fibre type; size and shape of fibres; concentration of asbestos fibres in the inhaled air and period of time over which the person was exposed. The asbestos related diseases include:

Asbestosis

Pleural plaques

Malignant mesothelioma of the pleura and peritoneum

Lung cancer

Benign asbestos pleural effusion

Progressive pleural fibrosis (diffuse pleural thickening)

Transpulmonary bands (crow’s feet)

SESA

Rounded atelectasis

All asbestos related diseases have a latency period that is the period commencing from the time of the exposure to the asbestos fibres first occurred until symptoms of a disease show. This may range from 10 – 50 years for the asbestos related diseases.

Workplace exposures to asbestos fibres first occurred while mining asbestos, manufacturing asbestos containing products or using those products during the construction of buildings. Currently, the main source of exposure to asbestos fibres is during the maintenance, renovation or demolition of old buildings with asbestos containing materials.

Asbestos containing materials are subject to environmental weathering which causes them to breakdown and release asbestos fibres. Low levels of airborne asbestos fibres are encountered in the environment from the breakdown of asbestos products. Environmental weathering of asbestos cement sheets in roofing and wall cladding, disturbance of asbestos from a variety of building materials like insulation and asbestos release to air from clutches and brakes in cars and trucks results in asbestos fibres being dispersed in the environment.

According to Australian Government Department of Health website, we are all exposed to low levels of asbestos in the air we breathe every day. Ambient or background air usually contains between 10 and 200 asbestos fibres in every 1000 litres (or cubic metre) of air (equivalent to 0.01 to 0.20 fibres per litre of air). However, most people do not become ill from this exposure, because the levels of asbestos present in the environment are very low. Most people are also exposed to higher levels of asbestos at some time in their lives; for example, in their workplace, community or home. However, for most people, this kind of infrequent exposure is also unlikely to result in any ill effects.

Safe Work Australia states that “the typical environmental background in outdoor air is 0.0005 fibres/ml and 0.0002 fibres/ml in indoor air. The daily inhalation volume for an average adult is 22 m3 or 22000 litres. This means 5500 fibres are breathed/day by the average person (proportion of time spent indoors = 20 hours/day). Despite this the general population does not contract asbestos related disease in significant numbers. The background rate of mesothelioma is less than one per million per year. By comparison, the annual death rate for a 40 year old male in 2008 was 1.6 per thousand or 1600 per million. However, there is no absolutely safe level of exposure to asbestos fibres.

Most people who develop asbestos related diseases were workers who have worked on jobs where they frequently breathed in large amounts of asbestos fibres. As an example, construction workers using unsafe practices in the past may have frequently encountered asbestos fibre levels significantly higher than those levels found in the background. The current workplace exposure standard (time weighted average (TWA) over an eight-hour period) is 0.1 fibres/millilitre of air (100 fibres per litre which is between 500 and 10,000 times the background levels). In the past, workers in asbestos milling or mining often encountered fibre concentrations a million times higher than background levels. In 2011, 606 deaths were caused by mesothelioma and 125 deaths were caused by asbestosis in Australia.

Family members of exposed workers or those who lived close to active asbestos mines in the past are also at risk. A worker exposed to asbestos fibres or a home renovator can carry asbestos fibres on their clothing, boots, skin, hair and tools. Everyone should be alert to ensure they do not become exposed to these fibres.

A very small number of asbestos-related disease cases occur each year in people who have not worked with asbestos products. The low number of cases makes it difficult to determine the exact cause of the disease or the likely exposure event, but unsafe handling of asbestos materials in the home may have contributed to some of these cases.

The uncontrolled disturbance of asbestos containing materials must be avoided at any time to prevent the release of airborne asbestos and increase the risk of exposure to airborne asbestos fibres. The exposure to airborne asbestos fibres should be reduced to as low as reasonably practicable by managing asbestos containing materials in-situ and adopting safe work practices as required by the Work Health & Safety Regulations and Safe Work Australia Codes of Practice “How to Manage & Control Asbestos In the Workplace”: and “ How to Safely Remove Asbestos”.

If you require assistance in asbestos inspection, asbestos testing or asbestos assessment contact SESA on 02 8786 1808.

First posted here https://www.sesa.com.au/15-asbestos/asbestos-exposure-risk-of-developing-asbestos-related-disease.html - Comments: 0

Asbestos Exposure & Risk of Developing Asbestos Related - 24 Jan 2018 10:26

Tags:

Asbestos is a naturally occurring rock forming mineral silicate in fibrous form belonging to the serpentine and amphibole groups. It occurs naturally in large deposits on every continent in the world. There are six types of naturally occurring asbestos fibres of which only three have been used commercially in Australia. These included the serpentine: Chrysotile (white asbestos); and the amphiboles: Crocidolite (blue asbestos) and Amosite (brown or grey asbestos). The other three non-commercially used amphiboles included Tremolite, Actinolite and Anthophyllite.

Asbestos has been used in the ancient world of the Egyptians, Greeks and Romans. It is believed that as early as 4000 BC, asbestos fibres were used for wicks in lamps and candles. Between 2000-3000 BC, embalmed bodies of Egyptian pharaohs were wrapped in asbestos cloth. The Greeks and Romans documented the harmful effects of asbestos fibres on those who mined the silken material from ancient stone quarries noting a “sickness of the lungs” in slaves who wove asbestos into cloth.

The commercial use of asbestos commenced in the late 1800s in Australia in four main industries including Mining and Milling; Building & Construction (for strengthening cement and plastics, for insulation, fireproofing and sound absorption); Ship Building (eg. insulation of boilers and steampipes) and the Automotive Industry (eg. vehicle brake shoes, gaskets and clutch pads).

There were over 3000 products (Asbestos Containing Materials or ACM) manufactured with asbestos fibres. The ACM fall into two broad categories: friable and non-friable (or bonded).

‘Friable’ is ACM that can be easily reduced to powder when crushed by hand, when dry. These materials can contain higher percentages of asbestos fibres and are easily or more likely to release airborne fibres into the environment with minimal disturbance. As such, they pose a greater risk to health. Friable materials must only be handled and removed by an asbestos removalist with Class A Asbestos Removal Licence. Examples of friable asbestos-containing materials include sprayed on fire retardants, insulation (eg. millboard, pipe insulation), sound proofing, the lining on some old domestic heaters, stoves and hot water systems and associated pipe lagging, the backing of sheet vinyl and linoleum floor coverings, thermal lagging, some vermiculite.

‘Non-friable’, or bonded ACM is used to refer to ACM in which the asbestos is firmly bound in the matrix of the material. These materials are unlikely to release measurable levels of airborne asbestos fibre into the environment if they are undisturbed. Therefore, they generally pose a lower risk to health. However, activities that may abrade the ACM such as drilling, grinding have the potential to release higher concentrations of airborne asbestos fibres into the environment. The non-friable ACM are mainly made up of asbestos fibres together with a bonding compound (such as cement), and typically contain up to 15 per cent asbestos. Non-friable ACM are solid, quite rigid and the asbestos fibres are tightly bound in the material. Non-friable ACM are the most common in domestic houses. They are commonly called ‘fibro’, ‘asbestos cement’ and ‘AC sheeting’. Examples of non-friable ACM include asbestos cement products (flat, profiled and corrugated sheeting used in walls, ceilings and roofs, moulded items such as downpipes) and vinyl floor tiles.

While asbestos is a hazardous material it can only pose a risk to health if the asbestos fibres become airborne in respirable size, are inhaled and lodge deep into the lungs (in the alveoli). Inhalation is the main route of entry to the body. Respirable fibres are fibres that are more likely to reach the small airways and alveolar region of the lung and are defined as having a length of more than five microns, and an aspect ratio (length/width) greater than 3:1.

Asbestos is classified according to the Globally Harmonised System of Classification and Labelling of Chemicals (GHS) as Carcinogenicity Category 1A (May cause cancer).

There are several asbestos related diseases that may result from the exposure to asbestos which depends on factors such as fibre type; size and shape of fibres; concentration of asbestos fibres in the inhaled air and period of time over which the person was exposed. The asbestos related diseases include:

Asbestosis

Pleural plaques

Malignant mesothelioma of the pleura and peritoneum

Lung cancer

Benign asbestos pleural effusion

Progressive pleural fibrosis (diffuse pleural thickening)

Transpulmonary bands (crow’s feet)

Rounded atelectasis

All asbestos related diseases have a latency period that is the period commencing from the time of the exposure to the asbestos fibres first occurred until symptoms of a disease show. This may range from 10 – 50 years for the asbestos related diseases.

Workplace exposures to asbestos fibres first occurred while mining asbestos, manufacturing asbestos containing products or using those products during the construction of buildings. Currently, the main source of exposure to asbestos fibres is during the maintenance, renovation or demolition of old buildings with asbestos containing materials.

Asbestos containing materials are subject to environmental weathering which causes them to breakdown and release asbestos fibres. Low levels of airborne asbestos fibres are encountered in the environment from the breakdown of asbestos products. Environmental weathering of asbestos cement sheets in roofing and wall cladding, disturbance of asbestos from a variety of building materials like insulation and asbestos release to air from clutches and brakes in cars and trucks results in asbestos fibres being dispersed in the environment.

According to Australian Government Department of Health website, we are all exposed to low levels of asbestos in the air we breathe every day. Ambient or background air usually contains between 10 and 200 asbestos fibres in every 1000 litres (or cubic metre) of air (equivalent to 0.01 to 0.20 fibres per litre of air). However, most people do not become ill from this exposure, because the levels of asbestos present in the environment are very low. Most people are also exposed to higher levels of asbestos at some time in their lives; for example, in their workplace, community or home. However, for most people, this kind of infrequent exposure is also unlikely to result in any ill effects.

Safe Work Australia states that “the typical environmental background in outdoor air is 0.0005 fibres/ml and 0.0002 fibres/ml in indoor air. The daily inhalation volume for an average adult is 22 m3 or 22000 litres. This means 5500 fibres are breathed/day by the average person (proportion of time spent indoors = 20 hours/day). Despite this the general population does not contract asbestos related disease in significant numbers. The background rate of mesothelioma is less than one per million per year. By comparison, the annual death rate for a 40 year old male in 2008 was 1.6 per thousand or 1600 per million. However, there is no absolutely safe level of exposure to asbestos fibres.

Most people who develop asbestos related diseases were workers who have worked on jobs where they frequently breathed in large amounts of asbestos fibres. As an example, construction workers using unsafe practices in the past may have frequently encountered asbestos fibre levels significantly higher than those levels found in the background. The current workplace exposure standard (time weighted average (TWA) over an eight-hour period) is 0.1 fibres/millilitre of air (100 fibres per litre which is between 500 and 10,000 times the background levels). In the past, workers in asbestos milling or mining often encountered fibre concentrations a million times higher than background levels. In 2011, 606 deaths were caused by mesothelioma and 125 deaths were caused by asbestosis in Australia.

Family members of exposed workers or those who lived close to active asbestos mines in the past are also at risk. A worker exposed to asbestos fibres or a home renovator can carry asbestos fibres on their clothing, boots, skin, hair and tools. Everyone should be alert to ensure they do not become exposed to these fibres.

A very small number of asbestos-related disease cases occur each year in people who have not worked with asbestos products. The low number of cases makes it difficult to determine the exact cause of the disease or the likely exposure event, but unsafe handling of asbestos materials in the home may have contributed to some of these cases.

The uncontrolled disturbance of asbestos containing materials must be avoided at any time to prevent the release of airborne asbestos and increase the risk of exposure to airborne asbestos fibres. The exposure to airborne asbestos fibres should be reduced to as low as reasonably practicable by managing asbestos containing materials in-situ and adopting safe work practices as required by the Work Health & Safety Regulations and Safe Work Australia Codes of Practice “How to Manage & Control Asbestos In the Workplace”: and “ How to Safely Remove Asbestos”.

SESA

If you require assistance in asbestos inspection, asbestos testing or asbestos assessment contact SESA on 02 8786 1808.

First posted here https://www.sesa.com.au/15-asbestos/asbestos-exposure-risk-of-developing-asbestos-related-disease.html - Comments: 0

Asbestos Exposure & Risk of Developing Asbestos Related - 24 Jan 2018 06:57

Tags:

Asbestos is a naturally occurring rock forming mineral silicate in fibrous form belonging to the serpentine and amphibole groups. It occurs naturally in large deposits on every continent in the world. There are six types of naturally occurring asbestos fibres of which only three have been used commercially in Australia. These included the serpentine: Chrysotile (white asbestos); and the amphiboles: Crocidolite (blue asbestos) and Amosite (brown or grey asbestos). The other three non-commercially used amphiboles included Tremolite, Actinolite and Anthophyllite.

Asbestos has been used in the ancient world of the Egyptians, Greeks and Romans. It is believed that as early as 4000 BC, asbestos fibres were used for wicks in lamps and candles. Between 2000-3000 BC, embalmed bodies of Egyptian pharaohs were wrapped in asbestos cloth. The Greeks and Romans documented the harmful effects of asbestos fibres on those who mined the silken material from ancient stone quarries noting a “sickness of the lungs” in slaves who wove asbestos into cloth.

The commercial use of asbestos commenced in the late 1800s in Australia in four main industries including Mining and Milling; Building & Construction (for strengthening cement and plastics, for insulation, fireproofing and sound absorption); Ship Building (eg. insulation of boilers and steampipes) and the Automotive Industry (eg. vehicle brake shoes, gaskets and clutch pads).

There were over 3000 products (Asbestos Containing Materials or ACM) manufactured with asbestos fibres. The ACM fall into two broad categories: friable and non-friable (or bonded).

‘Friable’ is ACM that can be easily reduced to powder when crushed by hand, when dry. These materials can contain higher percentages of asbestos fibres and are easily or more likely to release airborne fibres into the environment with minimal disturbance. As such, they pose a greater risk to health. Friable materials must only be handled and removed by an asbestos removalist with Class A Asbestos Removal Licence. Examples of friable asbestos-containing materials include sprayed on fire retardants, insulation (eg. millboard, pipe insulation), sound proofing, the lining on some old domestic heaters, stoves and hot water systems and associated pipe lagging, the backing of sheet vinyl and linoleum floor coverings, thermal lagging, some vermiculite.

‘Non-friable’, or bonded ACM is used to refer to ACM in which the asbestos is firmly bound in the matrix of the material. These materials are unlikely to release measurable levels of airborne asbestos fibre into the environment if they are undisturbed. Therefore, they generally pose a lower risk to health. However, activities that may abrade the ACM such as drilling, grinding have the potential to release higher concentrations of airborne asbestos fibres into the environment. The non-friable ACM are mainly made up of asbestos fibres together with a bonding compound (such as cement), and typically contain up to 15 per cent asbestos. Non-friable ACM are solid, quite rigid and the asbestos fibres are tightly bound in the material. Non-friable ACM are the most common in domestic houses. They are commonly called ‘fibro’, ‘asbestos cement’ and ‘AC sheeting’. Examples of non-friable ACM include asbestos cement products (flat, profiled and corrugated sheeting used in walls, ceilings and roofs, moulded items such as downpipes) and vinyl floor tiles.

While asbestos is a hazardous material it can only pose a risk to health if the asbestos fibres become airborne in respirable size, are inhaled and lodge deep into the lungs (in the alveoli). Inhalation is the main route of entry to the body. Respirable fibres are fibres that are more likely to reach the small airways and alveolar region of the lung and are defined as having a length of more than five microns, and an aspect ratio (length/width) greater than 3:1.

Asbestos is classified according to the Globally Harmonised System of Classification and Labelling of Chemicals (GHS) as Carcinogenicity Category 1A (May cause cancer).

There are several asbestos related diseases that may result from the exposure to asbestos which depends on factors such as fibre type; size and shape of fibres; concentration of asbestos fibres in the inhaled air and period of time over which the person was exposed. The asbestos related diseases include:

Asbestosis

Pleural plaques

Malignant mesothelioma of the pleura and peritoneum

Lung cancer

Benign asbestos pleural effusion

Progressive pleural fibrosis (diffuse pleural thickening)

Transpulmonary bands (crow’s feet)

Rounded atelectasis

All asbestos related diseases have a latency period that is the period commencing from the time of the exposure to the asbestos fibres first occurred until symptoms of a disease show. This may range from 10 – 50 years for the asbestos related diseases.

https://www.sesa.com.au/asbestos-audit-report-register-sydney-nsw-canberra-act.html

Workplace exposures to asbestos fibres first occurred while mining asbestos, manufacturing asbestos containing products or using those products during the construction of buildings. Currently, the main source of exposure to asbestos fibres is during the maintenance, renovation or demolition of old buildings with asbestos containing materials.

Asbestos containing materials are subject to environmental weathering which causes them to breakdown and release asbestos fibres. Low levels of airborne asbestos fibres are encountered in the environment from the breakdown of asbestos products. Environmental weathering of asbestos cement sheets in roofing and wall cladding, disturbance of asbestos from a variety of building materials like insulation and asbestos release to air from clutches and brakes in cars and trucks results in asbestos fibres being dispersed in the environment.

According to Australian Government Department of Health website, we are all exposed to low levels of asbestos in the air we breathe every day. Ambient or background air usually contains between 10 and 200 asbestos fibres in every 1000 litres (or cubic metre) of air (equivalent to 0.01 to 0.20 fibres per litre of air). However, most people do not become ill from this exposure, because the levels of asbestos present in the environment are very low. Most people are also exposed to higher levels of asbestos at some time in their lives; for example, in their workplace, community or home. However, for most people, this kind of infrequent exposure is also unlikely to result in any ill effects.

Safe Work Australia states that “the typical environmental background in outdoor air is 0.0005 fibres/ml and 0.0002 fibres/ml in indoor air. The daily inhalation volume for an average adult is 22 m3 or 22000 litres. This means 5500 fibres are breathed/day by the average person (proportion of time spent indoors = 20 hours/day). Despite this the general population does not contract asbestos related disease in significant numbers. The background rate of mesothelioma is less than one per million per year. By comparison, the annual death rate for a 40 year old male in 2008 was 1.6 per thousand or 1600 per million. However, there is no absolutely safe level of exposure to asbestos fibres.

Most people who develop asbestos related diseases were workers who have worked on jobs where they frequently breathed in large amounts of asbestos fibres. As an example, construction workers using unsafe practices in the past may have frequently encountered asbestos fibre levels significantly higher than those levels found in the background. The current workplace exposure standard (time weighted average (TWA) over an eight-hour period) is 0.1 fibres/millilitre of air (100 fibres per litre which is between 500 and 10,000 times the background levels). In the past, workers in asbestos milling or mining often encountered fibre concentrations a million times higher than background levels. In 2011, 606 deaths were caused by mesothelioma and 125 deaths were caused by asbestosis in Australia.

Family members of exposed workers or those who lived close to active asbestos mines in the past are also at risk. A worker exposed to asbestos fibres or a home renovator can carry asbestos fibres on their clothing, boots, skin, hair and tools. Everyone should be alert to ensure they do not become exposed to these fibres.

A very small number of asbestos-related disease cases occur each year in people who have not worked with asbestos products. The low number of cases makes it difficult to determine the exact cause of the disease or the likely exposure event, but unsafe handling of asbestos materials in the home may have contributed to some of these cases.

The uncontrolled disturbance of asbestos containing materials must be avoided at any time to prevent the release of airborne asbestos and increase the risk of exposure to airborne asbestos fibres. The exposure to airborne asbestos fibres should be reduced to as low as reasonably practicable by managing asbestos containing materials in-situ and adopting safe work practices as required by the Work Health & Safety Regulations and Safe Work Australia Codes of Practice “How to Manage & Control Asbestos In the Workplace”: and “ How to Safely Remove Asbestos”.

If you require assistance in asbestos inspection, asbestos testing or asbestos assessment contact SESA on 02 8786 1808.

First posted here https://www.sesa.com.au/15-asbestos/asbestos-exposure-risk-of-developing-asbestos-related-disease.html - Comments: 0

An Abundance Of Tips And Tricks To Assist With Solar En - 17 Jan 2018 19:43

Tags:

Before Paying For A Solar Panel Make Sure It Is A Worthwhile Investment

Solar energy has been slipping into our lives, little by little. Many people are catching on about how beneficial solar energy can be for them. If you'd like to know more about solar energy, read on. This article will give you the latest information regarding solar power.

Your solar energy system needs to be exposed to the sun at all times. Most homeowners have their solar panels installed on their roof but you could also have some panels installed on your front lawn. Do not hesitate to cut a few trees to avoid shadows and have a professional help you determine the best place for your panels.

Are your energy bills getting a little out of control these days? If you are tired of paying costly energy bills then it is time to switch to solar energy. It might cost a little more upfront, but will ultimately end up saving you a ton of money in the long run.

Take the time to compare different types of solar panels before you invest in a green energy system. There are different technologies and brands to compare and it is true that the most expensive panels are often the most efficient ones. Talk with vendors and professionals to learn more about solar panels.

The cost of panels is high, so buy as few as possible. You should find a professional who can conduct an energy audit. This can assist you in locating the things that waste energy in your house and help to fix them. You shouldn't, therefore, have to have as many panels as you initially thought.

Make sure to have your solar panels professionally installed. The installation of these panels needs to be very precise, and you do not want to mess it up. Having a professional installation also provides you with a warranty, and this gives you somewhere to turn if things are not working right.

Do your own research and find out if there are any rebates available for adding a solar system to your home. There are many local, state and federal programs that offer rebates for installing solar power in your home. Also check to see if you are eligible for tax incentives as well.

Although the initial cost of solar panels can be quite expensive, you need to think in terms of future savings. Once your initial investment is paid off, you will never have to be dependent on another energy company again. This is because you will get all the energy you need from the sun.

Be sure to account for maintenance and upkeep costs when figuring out the costs of a solar energy system. While solar energy has the potential for a lot of savings, it greatly depends on your location. Solar power is not right for every situation, and even has the possibility of costing you more money in the long run.

Carefully calculate the dollar/watts ratio of any solar panel before making the final purchase. Technology is moving fast and you should judge your decision based on the standards of the current market. The panels that produce more wattage are the panels that typically cost more, but a high-wattage yesterday may not be as significant today.

Anything that saves us money is favorable these days, as is something that pollutes the environment less. Why not seriously think about converting to solar energy? Hopefully this article has answered your questions and sold you on the many benefits that solar energy has to offer in your home or business. - Comments: 0

Asbestos Exposure & Risk of Developing Asbestos Related - 10 Jan 2018 16:58

Tags:

Asbestos is a naturally occurring rock forming mineral silicate in fibrous form belonging to the serpentine and amphibole groups. It occurs naturally in large deposits on every continent in the world. There are six types of naturally occurring asbestos fibres of which only three have been used commercially in Australia. These included the serpentine: Chrysotile (white asbestos); and the amphiboles: Crocidolite (blue asbestos) and Amosite (brown or grey asbestos). The other three non-commercially used amphiboles included Tremolite, Actinolite and Anthophyllite.

Asbestos has been used in the ancient world of the Egyptians, Greeks and Romans. It is believed that as early as 4000 BC, asbestos fibres were used for wicks in lamps and candles. Between 2000-3000 BC, embalmed bodies of Egyptian pharaohs were wrapped in asbestos cloth. The Greeks and Romans documented the harmful effects of asbestos fibres on those who mined the silken material from ancient stone quarries noting a “sickness of the lungs” in slaves who wove asbestos into cloth.

The commercial use of asbestos commenced in the late 1800s in Australia in four main industries including Mining and Milling; Building & Construction (for strengthening cement and plastics, for insulation, fireproofing and sound absorption); Ship Building (eg. insulation of boilers and steampipes) and the Automotive Industry (eg. vehicle brake shoes, gaskets and clutch pads).

There were over 3000 products (Asbestos Containing Materials or ACM) manufactured with asbestos fibres. The ACM fall into two broad categories: friable and non-friable (or bonded).

‘Friable’ is ACM that can be easily reduced to powder when crushed by hand, when dry. These materials can contain higher percentages of asbestos fibres and are easily or more likely to release airborne fibres into the environment with minimal disturbance. As such, they pose a greater risk to health. Friable materials must only be handled and removed by an asbestos removalist with Class A Asbestos Removal Licence. Examples of friable asbestos-containing materials include sprayed on fire retardants, insulation (eg. millboard, pipe insulation), sound proofing, the lining on some old domestic heaters, stoves and hot water systems and associated pipe lagging, the backing of sheet vinyl and linoleum floor coverings, thermal lagging, some vermiculite.

‘Non-friable’, or bonded ACM is used to refer to ACM in which the asbestos is firmly bound in the matrix of the material. These materials are unlikely to release measurable levels of airborne asbestos fibre into the environment if they are undisturbed. Therefore, they generally pose a lower risk to health. However, activities that may abrade the ACM such as drilling, grinding have the potential to release higher concentrations of airborne asbestos fibres into the environment. The non-friable ACM are mainly made up of asbestos fibres together with a bonding compound (such as cement), and typically contain up to 15 per cent asbestos. Non-friable ACM are solid, quite rigid and the asbestos fibres are tightly bound in the material. Non-friable ACM are the most common in domestic houses. They are commonly called ‘fibro’, ‘asbestos cement’ and ‘AC sheeting’. Examples of non-friable ACM include asbestos cement products (flat, profiled and corrugated sheeting used in walls, ceilings and roofs, moulded items such as downpipes) and vinyl floor tiles.

While asbestos is a hazardous material it can only pose a risk to health if the asbestos fibres become airborne in respirable size, are inhaled and lodge deep into the lungs (in the alveoli). Inhalation is the main route of entry to the body. Respirable fibres are fibres that are more likely to reach the small airways and alveolar region of the lung and are defined as having a length of more than five microns, and an aspect ratio (length/width) greater than 3:1.

Asbestos is classified according to the Globally Harmonised System of Classification and Labelling of Chemicals (GHS) as Carcinogenicity Category 1A (May cause cancer).

There are several asbestos related diseases that may result from the exposure to asbestos which depends on factors such as fibre type; size and shape of fibres; concentration of asbestos fibres in the inhaled air and period of time over which the person was exposed. The asbestos related diseases include:

Asbestosis

Pleural plaques

Malignant mesothelioma of the pleura and peritoneum

Lung cancer

Benign asbestos pleural effusion

Progressive pleural fibrosis (diffuse pleural thickening)

Transpulmonary bands (crow’s feet)

Rounded atelectasis

All asbestos related diseases have a latency period that is the period commencing from the time of the exposure to the asbestos fibres first occurred until symptoms of a disease show. This may range from 10 – 50 years for the asbestos related diseases.

Workplace exposures to asbestos fibres first occurred while mining asbestos, manufacturing asbestos containing products or using those products during the construction of buildings. Currently, the main source of exposure to asbestos fibres is during the maintenance, renovation or demolition of old buildings with asbestos containing materials.

Asbestos containing materials are subject to environmental weathering which causes them to breakdown and release asbestos fibres. Low levels of airborne asbestos fibres are encountered in the environment from the breakdown of asbestos products. Environmental weathering of asbestos cement sheets in roofing and wall cladding, disturbance of asbestos from a variety of building materials like insulation and asbestos release to air from clutches and brakes in cars and trucks results in asbestos fibres being dispersed in the environment.

According to Australian Government Department of Health website, we are all exposed to low levels of asbestos in the air we breathe every day. Ambient or background air usually contains between 10 and 200 asbestos fibres in every 1000 litres (or cubic metre) of air (equivalent to 0.01 to 0.20 fibres per litre of air). However, most people do not become ill from this exposure, because the levels of asbestos present in the environment are very low. Most people are also exposed to higher levels of asbestos at some time in their lives; for example, in their workplace, community or home. However, for most people, this kind of infrequent exposure is also unlikely to result in any ill effects.

Safe Work Australia states that “the typical environmental background in outdoor air is 0.0005 fibres/ml and 0.0002 fibres/ml in indoor air. The daily inhalation volume for an average adult is 22 m3 or 22000 litres. This means 5500 fibres are breathed/day by the average person (proportion of time spent indoors = 20 hours/day). Despite this the general population does not contract asbestos related disease in significant numbers. The background rate of mesothelioma is less than one per million per year. By comparison, the annual death rate for a 40 year old male in 2008 was 1.6 per thousand or 1600 per million. However, there is no absolutely safe level of exposure to asbestos fibres.

Most people who develop asbestos related diseases were workers who have worked on jobs where they frequently breathed in large amounts of asbestos fibres. As an example, construction workers using unsafe practices in the past may have frequently encountered asbestos fibre levels significantly higher than those levels found in the background. The current workplace exposure standard (time weighted average (TWA) over an eight-hour period) is 0.1 fibres/millilitre of air (100 fibres per litre which is between 500 and 10,000 times the background levels). In the past, workers in asbestos milling or mining often encountered fibre concentrations a million times higher than background levels. In 2011, 606 deaths were caused by mesothelioma and 125 deaths were caused by asbestosis in Australia.

Asbestos Surveys Sydney

Family members of exposed workers or those who lived close to active asbestos mines in the past are also at risk. A worker exposed to asbestos fibres or a home renovator can carry asbestos fibres on their clothing, boots, skin, hair and tools. Everyone should be alert to ensure they do not become exposed to these fibres.

A very small number of asbestos-related disease cases occur each year in people who have not worked with asbestos products. The low number of cases makes it difficult to determine the exact cause of the disease or the likely exposure event, but unsafe handling of asbestos materials in the home may have contributed to some of these cases.

The uncontrolled disturbance of asbestos containing materials must be avoided at any time to prevent the release of airborne asbestos and increase the risk of exposure to airborne asbestos fibres. The exposure to airborne asbestos fibres should be reduced to as low as reasonably practicable by managing asbestos containing materials in-situ and adopting safe work practices as required by the Work Health & Safety Regulations and Safe Work Australia Codes of Practice “How to Manage & Control Asbestos In the Workplace”: and “ How to Safely Remove Asbestos”.

If you require assistance in asbestos inspection, asbestos testing or asbestos assessment contact SESA on 02 8786 1808.

First posted here https://www.sesa.com.au/15-asbestos/asbestos-exposure-risk-of-developing-asbestos-related-disease.html - Comments: 0

Asbestos Exposure & Risk of Developing Asbestos Related - 10 Jan 2018 15:49

Tags:

Asbestos is a naturally occurring rock forming mineral silicate in fibrous form belonging to the serpentine and amphibole groups. It occurs naturally in large deposits on every continent in the world. There are six types of naturally occurring asbestos fibres of which only three have been used commercially in Australia. These included the serpentine: Chrysotile (white asbestos); and the amphiboles: Crocidolite (blue asbestos) and Amosite (brown or grey asbestos). The other three non-commercially used amphiboles included Tremolite, Actinolite and Anthophyllite.

Asbestos has been used in the ancient world of the Egyptians, Greeks and Romans. It is believed that as early as 4000 BC, asbestos fibres were used for wicks in lamps and candles. Between 2000-3000 BC, embalmed bodies of Egyptian pharaohs were wrapped in asbestos cloth. The Greeks and Romans documented the harmful effects of asbestos fibres on those who mined the silken material from ancient stone quarries noting a “sickness of the lungs” in slaves who wove asbestos into cloth.

The commercial use of asbestos commenced in the late 1800s in Australia in four main industries including Mining and Milling; Building & Construction (for strengthening cement and plastics, for insulation, fireproofing and sound absorption); Ship Building (eg. insulation of boilers and steampipes) and the Automotive Industry (eg. vehicle brake shoes, gaskets and clutch pads).

There were over 3000 products (Asbestos Containing Materials or ACM) manufactured with asbestos fibres. The ACM fall into two broad categories: friable and non-friable (or bonded).

‘Friable’ is ACM that can be easily reduced to powder when crushed by hand, when dry. These materials can contain higher percentages of asbestos fibres and are easily or more likely to release airborne fibres into the environment with minimal disturbance. As such, they pose a greater risk to health. Friable materials must only be handled and removed by an asbestos removalist with Class A Asbestos Removal Licence. Examples of friable asbestos-containing materials include sprayed on fire retardants, insulation (eg. millboard, pipe insulation), sound proofing, the lining on some old domestic heaters, stoves and hot water systems and associated pipe lagging, the backing of sheet vinyl and linoleum floor coverings, thermal lagging, some vermiculite.

‘Non-friable’, or bonded ACM is used to refer to ACM in which the asbestos is firmly bound in the matrix of the material. These materials are unlikely to release measurable levels of airborne asbestos fibre into the environment if they are undisturbed. Therefore, they generally pose a lower risk to health. However, activities that may abrade the ACM such as drilling, grinding have the potential to release higher concentrations of airborne asbestos fibres into the environment. The non-friable ACM are mainly made up of asbestos fibres together with a bonding compound (such as cement), and typically contain up to 15 per cent asbestos. Non-friable ACM are solid, quite rigid and the asbestos fibres are tightly bound in the material. Non-friable ACM are the most common in domestic houses. They are commonly called ‘fibro’, ‘asbestos cement’ and ‘AC sheeting’. Examples of non-friable ACM include asbestos cement products (flat, profiled and corrugated sheeting used in walls, ceilings and roofs, moulded items such as downpipes) and vinyl floor tiles.

While asbestos is a hazardous material it can only pose a risk to health if the asbestos fibres become airborne in respirable size, are inhaled and lodge deep into the lungs (in the alveoli). Inhalation is the main route of entry to the body. Respirable fibres are fibres that are more likely to reach the small airways and alveolar region of the lung and are defined as having a length of more than five microns, and an aspect ratio (length/width) greater than 3:1.

Asbestos is classified according to the Globally Harmonised System of Classification and Labelling of Chemicals (GHS) as Carcinogenicity Category 1A (May cause cancer).

There are several asbestos related diseases that may result from the exposure to asbestos which depends on factors such as fibre type; size and shape of fibres; concentration of asbestos fibres in the inhaled air and period of time over which the person was exposed. The asbestos related diseases include:

Asbestosis

Pleural plaques

Malignant mesothelioma of the pleura and peritoneum

Asbestos Clearance Certificate Canberra

Lung cancer

Benign asbestos pleural effusion

Progressive pleural fibrosis (diffuse pleural thickening)

Transpulmonary bands (crow’s feet)

Rounded atelectasis

All asbestos related diseases have a latency period that is the period commencing from the time of the exposure to the asbestos fibres first occurred until symptoms of a disease show. This may range from 10 – 50 years for the asbestos related diseases.

Workplace exposures to asbestos fibres first occurred while mining asbestos, manufacturing asbestos containing products or using those products during the construction of buildings. Currently, the main source of exposure to asbestos fibres is during the maintenance, renovation or demolition of old buildings with asbestos containing materials.

Asbestos containing materials are subject to environmental weathering which causes them to breakdown and release asbestos fibres. Low levels of airborne asbestos fibres are encountered in the environment from the breakdown of asbestos products. Environmental weathering of asbestos cement sheets in roofing and wall cladding, disturbance of asbestos from a variety of building materials like insulation and asbestos release to air from clutches and brakes in cars and trucks results in asbestos fibres being dispersed in the environment.

According to Australian Government Department of Health website, we are all exposed to low levels of asbestos in the air we breathe every day. Ambient or background air usually contains between 10 and 200 asbestos fibres in every 1000 litres (or cubic metre) of air (equivalent to 0.01 to 0.20 fibres per litre of air). However, most people do not become ill from this exposure, because the levels of asbestos present in the environment are very low. Most people are also exposed to higher levels of asbestos at some time in their lives; for example, in their workplace, community or home. However, for most people, this kind of infrequent exposure is also unlikely to result in any ill effects.

Safe Work Australia states that “the typical environmental background in outdoor air is 0.0005 fibres/ml and 0.0002 fibres/ml in indoor air. The daily inhalation volume for an average adult is 22 m3 or 22000 litres. This means 5500 fibres are breathed/day by the average person (proportion of time spent indoors = 20 hours/day). Despite this the general population does not contract asbestos related disease in significant numbers. The background rate of mesothelioma is less than one per million per year. By comparison, the annual death rate for a 40 year old male in 2008 was 1.6 per thousand or 1600 per million. However, there is no absolutely safe level of exposure to asbestos fibres.

Most people who develop asbestos related diseases were workers who have worked on jobs where they frequently breathed in large amounts of asbestos fibres. As an example, construction workers using unsafe practices in the past may have frequently encountered asbestos fibre levels significantly higher than those levels found in the background. The current workplace exposure standard (time weighted average (TWA) over an eight-hour period) is 0.1 fibres/millilitre of air (100 fibres per litre which is between 500 and 10,000 times the background levels). In the past, workers in asbestos milling or mining often encountered fibre concentrations a million times higher than background levels. In 2011, 606 deaths were caused by mesothelioma and 125 deaths were caused by asbestosis in Australia.

Family members of exposed workers or those who lived close to active asbestos mines in the past are also at risk. A worker exposed to asbestos fibres or a home renovator can carry asbestos fibres on their clothing, boots, skin, hair and tools. Everyone should be alert to ensure they do not become exposed to these fibres.

A very small number of asbestos-related disease cases occur each year in people who have not worked with asbestos products. The low number of cases makes it difficult to determine the exact cause of the disease or the likely exposure event, but unsafe handling of asbestos materials in the home may have contributed to some of these cases.

The uncontrolled disturbance of asbestos containing materials must be avoided at any time to prevent the release of airborne asbestos and increase the risk of exposure to airborne asbestos fibres. The exposure to airborne asbestos fibres should be reduced to as low as reasonably practicable by managing asbestos containing materials in-situ and adopting safe work practices as required by the Work Health & Safety Regulations and Safe Work Australia Codes of Practice “How to Manage & Control Asbestos In the Workplace”: and “ How to Safely Remove Asbestos”.

If you require assistance in asbestos inspection, asbestos testing or asbestos assessment contact SESA on 02 8786 1808.

First posted here https://www.sesa.com.au/15-asbestos/asbestos-exposure-risk-of-developing-asbestos-related-disease.html - Comments: 0

Asbestos Exposure & Risk of Developing Asbestos Related - 10 Jan 2018 14:34

Tags:

Asbestos is a naturally occurring rock forming mineral silicate in fibrous form belonging to the serpentine and amphibole groups. It occurs naturally in large deposits on every continent in the world. There are six types of naturally occurring asbestos fibres of which only three have been used commercially in Australia. These included the serpentine: Chrysotile (white asbestos); and the amphiboles: Crocidolite (blue asbestos) and Amosite (brown or grey asbestos). The other three non-commercially used amphiboles included Tremolite, Actinolite and Anthophyllite.

Asbestos has been used in the ancient world of the Egyptians, Greeks and Romans. It is believed that as early as 4000 BC, asbestos fibres were used for wicks in lamps and candles. Between 2000-3000 BC, embalmed bodies of Egyptian pharaohs were wrapped in asbestos cloth. The Greeks and Romans documented the harmful effects of asbestos fibres on those who mined the silken material from ancient stone quarries noting a “sickness of the lungs” in slaves who wove asbestos into cloth.

The commercial use of asbestos commenced in the late 1800s in Australia in four main industries including Mining and Milling; Building & Construction (for strengthening cement and plastics, for insulation, fireproofing and sound absorption); Ship Building (eg. insulation of boilers and steampipes) and the Automotive Industry (eg. vehicle brake shoes, gaskets and clutch pads).

There were over 3000 products (Asbestos Containing Materials or ACM) manufactured with asbestos fibres. The ACM fall into two broad categories: friable and non-friable (or bonded).

‘Friable’ is ACM that can be easily reduced to powder when crushed by hand, when dry. These materials can contain higher percentages of asbestos fibres and are easily or more likely to release airborne fibres into the environment with minimal disturbance. As such, they pose a greater risk to health. Friable materials must only be handled and removed by an asbestos removalist with Class A Asbestos Removal Licence. Examples of friable asbestos-containing materials include sprayed on fire retardants, insulation (eg. millboard, pipe insulation), sound proofing, the lining on some old domestic heaters, stoves and hot water systems and associated pipe lagging, the backing of sheet vinyl and linoleum floor coverings, thermal lagging, some vermiculite.

‘Non-friable’, or bonded ACM is used to refer to ACM in which the asbestos is firmly bound in the matrix of the material. These materials are unlikely to release measurable levels of airborne asbestos fibre into the environment if they are undisturbed. Therefore, they generally pose a lower risk to health. However, activities that may abrade the ACM such as drilling, grinding have the potential to release higher concentrations of airborne asbestos fibres into the environment. The non-friable ACM are mainly made up of asbestos fibres together with a bonding compound (such as cement), and typically contain up to 15 per cent asbestos. Non-friable ACM are solid, quite rigid and the asbestos fibres are tightly bound in the material. Non-friable ACM are the most common in domestic houses. They are commonly called ‘fibro’, ‘asbestos cement’ and ‘AC sheeting’. Examples of non-friable ACM include asbestos cement products (flat, profiled and corrugated sheeting used in walls, ceilings and roofs, moulded items such as downpipes) and vinyl floor tiles.

While asbestos is a hazardous material it can only pose a risk to health if the asbestos fibres become airborne in respirable size, are inhaled and lodge deep into the lungs (in the alveoli). Inhalation is the main route of entry to the body. Respirable fibres are fibres that are more likely to reach the small airways and alveolar region of the lung and are defined as having a length of more than five microns, and an aspect ratio (length/width) greater than 3:1.

Asbestos is classified according to the Globally Harmonised System of Classification and Labelling of Chemicals (GHS) as Carcinogenicity Category 1A (May cause cancer).

There are several asbestos related diseases that may result from the exposure to asbestos which depends on factors such as fibre type; size and shape of fibres; concentration of asbestos fibres in the inhaled air and period of time over which the person was exposed. The asbestos related diseases include:

Asbestosis

Pleural plaques

Malignant mesothelioma of the pleura and peritoneum

Lung cancer

Benign asbestos pleural effusion

Progressive pleural fibrosis (diffuse pleural thickening)

SESA

Transpulmonary bands (crow’s feet)

Rounded atelectasis

All asbestos related diseases have a latency period that is the period commencing from the time of the exposure to the asbestos fibres first occurred until symptoms of a disease show. This may range from 10 – 50 years for the asbestos related diseases.

Workplace exposures to asbestos fibres first occurred while mining asbestos, manufacturing asbestos containing products or using those products during the construction of buildings. Currently, the main source of exposure to asbestos fibres is during the maintenance, renovation or demolition of old buildings with asbestos containing materials.

Asbestos containing materials are subject to environmental weathering which causes them to breakdown and release asbestos fibres. Low levels of airborne asbestos fibres are encountered in the environment from the breakdown of asbestos products. Environmental weathering of asbestos cement sheets in roofing and wall cladding, disturbance of asbestos from a variety of building materials like insulation and asbestos release to air from clutches and brakes in cars and trucks results in asbestos fibres being dispersed in the environment.

According to Australian Government Department of Health website, we are all exposed to low levels of asbestos in the air we breathe every day. Ambient or background air usually contains between 10 and 200 asbestos fibres in every 1000 litres (or cubic metre) of air (equivalent to 0.01 to 0.20 fibres per litre of air). However, most people do not become ill from this exposure, because the levels of asbestos present in the environment are very low. Most people are also exposed to higher levels of asbestos at some time in their lives; for example, in their workplace, community or home. However, for most people, this kind of infrequent exposure is also unlikely to result in any ill effects.

Safe Work Australia states that “the typical environmental background in outdoor air is 0.0005 fibres/ml and 0.0002 fibres/ml in indoor air. The daily inhalation volume for an average adult is 22 m3 or 22000 litres. This means 5500 fibres are breathed/day by the average person (proportion of time spent indoors = 20 hours/day). Despite this the general population does not contract asbestos related disease in significant numbers. The background rate of mesothelioma is less than one per million per year. By comparison, the annual death rate for a 40 year old male in 2008 was 1.6 per thousand or 1600 per million. However, there is no absolutely safe level of exposure to asbestos fibres.

Most people who develop asbestos related diseases were workers who have worked on jobs where they frequently breathed in large amounts of asbestos fibres. As an example, construction workers using unsafe practices in the past may have frequently encountered asbestos fibre levels significantly higher than those levels found in the background. The current workplace exposure standard (time weighted average (TWA) over an eight-hour period) is 0.1 fibres/millilitre of air (100 fibres per litre which is between 500 and 10,000 times the background levels). In the past, workers in asbestos milling or mining often encountered fibre concentrations a million times higher than background levels. In 2011, 606 deaths were caused by mesothelioma and 125 deaths were caused by asbestosis in Australia.

Family members of exposed workers or those who lived close to active asbestos mines in the past are also at risk. A worker exposed to asbestos fibres or a home renovator can carry asbestos fibres on their clothing, boots, skin, hair and tools. Everyone should be alert to ensure they do not become exposed to these fibres.

A very small number of asbestos-related disease cases occur each year in people who have not worked with asbestos products. The low number of cases makes it difficult to determine the exact cause of the disease or the likely exposure event, but unsafe handling of asbestos materials in the home may have contributed to some of these cases.

The uncontrolled disturbance of asbestos containing materials must be avoided at any time to prevent the release of airborne asbestos and increase the risk of exposure to airborne asbestos fibres. The exposure to airborne asbestos fibres should be reduced to as low as reasonably practicable by managing asbestos containing materials in-situ and adopting safe work practices as required by the Work Health & Safety Regulations and Safe Work Australia Codes of Practice “How to Manage & Control Asbestos In the Workplace”: and “ How to Safely Remove Asbestos”.

If you require assistance in asbestos inspection, asbestos testing or asbestos assessment contact SESA on 02 8786 1808.

First posted here https://www.sesa.com.au/15-asbestos/asbestos-exposure-risk-of-developing-asbestos-related-disease.html - Comments: 0

page 1 of 3123next »

Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License